上海AI实验室等开源,音频、音乐统一开发工具包Amphion

添加书签

专注AIGC领域的专业社区,关注微软&OpenAI、百度文心一言、讯飞星火等大语言模型(LLM)的发展和应用落地,聚焦LLM的市场研究和AIGC开发者生态,欢迎关注!

上海AI实验室、香港中文大学数据科学院、深圳大数据研究院联合开源了一个名为Amphion的音频、音乐和语音生成工具包。

Amphion可帮助开发人员研究文本生成音频、音乐等与音频相关的领域,可以在一个框架内完成,以解决生成模型黑箱、代码库分散、缺少评估指标等难题。

Amphion包含了数据处理、通用模块、优化算法等基础设施。同时针对文本到语音、歌声转换、文本到音频生成等任务,提供了特定的框架、模型和开发说明,还内置了各类神经语音编解码器和评价指标。

尤其是对于那些刚接触生成式AI开发的新手来说,Amphion非常容易上手。

开源地址:https://github.com/open-mmlab/Amphion

论文地址:https://arxiv.org/abs/2312.09911

上海AI实验室等开源,音频、音乐统一开发工具包Amphion插图

以下是Amphion包含的各种模型

文本到语音合成

Amphion内置的文本到语音合成模型,涵盖从传统到当前最先进的技术。例如,FastSpeech 2使用前馈式Transformer架构实现快速语音合成;

VITS融合了条件变分自编码器,可实现端到端的语音合成;Vall-E使用神经编解码器语言模型一键实现零资源的语音合成;NaturalSpeech 2利用潜在扩散模型合成高质量语音。

上海AI实验室等开源,音频、音乐统一开发工具包Amphion插图1

开发者可根据业务需求,选择使用不同的模型进行语音合成。

歌声转换

Amphion提供了提取说话人无关表示的各类基于内容的特征,例如,来自WeNet、Whisper和ContentVec的预训练语音特征。

同时实现了多种声学解码器架构,比如基于扩散模型、变压器和变分自编码器的方法。

上海AI实验室等开源,音频、音乐统一开发工具包Amphion插图2

此外,借助内置的神经语音编解码器合成声波输出,开发者可以灵活配置不同模块,进行不同歌声风格转换。

文本到音频生成

Amphion使用了主流的潜在扩散生成模型。该模型包含一个将频谱映射到潜空间的变分自动编码器,一个接受文本并输出条件的T5编码器,以及一个扩散网络生成最终音频。

用户只需给出音频描述文本,就可以生成语义一致的背景音效。

神经语音编解码器

Amphion提供了丰富的编解码器算法选项,涵盖主流的自动回归模型、流模型、对抗生成模型、扩散模型等。

上海AI实验室等开源,音频、音乐统一开发工具包Amphion插图3

例如,WaveNet使用膨胀卷积实现高质量语音合成;HiFi-GAN应用多尺度判别器实现高保真的语音重构等,可满足不同业务场景的需求。

性能评估模块

为了帮助开发者全面评估生成语音的质量和性能,Amphion提供了丰富的评估模块。

评估基频建模、能量建模、频谱失真、可懂度等语音维度,可帮助开发者简单直观地比较不同模型的性能。

上海AI实验室等开源,音频、音乐统一开发工具包Amphion插图4

开发团队表示,未来,会持续更新这个工具包,加入更多与语音相关的模型,打造成最好用的开源语音工具包之一。

本文素材来源Amphion论文,如有侵权请联系删除

END

上海AI实验室等开源,音频、音乐统一开发工具包Amphion插图5

本篇文章来源于微信公众号: AIGC开放社区